COMMUNICATIONS

Prostaglandin E_1 is more effective, when incorporated in lipid microspheres, for treatment of peripheral vascular diseases in man

Y. MIZUSHIMA*, A. YANAGAWA, K. HOSHI, Department of Internal Medicine, St. Marianna University, Sugao, Miyamae-ku, Kawasaki, Japan 213

Prostaglandin E_1 (PGE₁) is a potent vasodilator as well as an inhibitor of platelet aggregation. Because of these properties, PGE_1 has been used clinically for the treatment of several vascular disorders such as Raynaud's and Buerger's diseases (Clifford et al 1980; Martin et al 1981). Since PGE_1 is rapidly inactivated in the lungs, PGE₁ must be administered into the obstructed artery or a large amount of it has to be given intravenously. The distribution of PGE₁ in-vivo induces the systemic effects of diarrhoea and hypotension. PGE₁ also causes irritation in blood vessels near the site of injection. To avoid these problems of PGE_1 , we have incorporated PGE₁ in lipid microspheres (small lipid particles) with an average particle size of $0.2 \,\mu m$, suspensions of which are in widespread use for parenteral nutrition in man, and we have compared the vasodilator property of the preparation in man with that of commercially available PGE₁.

PGE₁ was purchased from Fuji Chemical Co., Ltd, Toyama, Japan. PGE₁-CD (cyclodextrin clathrated PGE₁, Prostandin) was kindly supplied by Ono Pharm. Co., Ltd, Osaka, Japan. The method of preparing a suspension of lipid microspheres containing PGE₁ (lipo-PGE₁) and the content were those of Mizushima et al (1982, 1983). Briefly, PGE₁ was dissolved in soybean oil containing yolk phospholipids (10:1·2). The mixture was emulsified in water (1:9) with a Manton-Gaulin homogenizer. The resultant emulsion was put in 1 ml glass ampoules and sterilized at 121 °C for 10 min. The final concentration of PGE₁ in the lipo-PGE₁ preparation was approximately 3 μ g ml⁻¹. The concentration was measured according to Terragno et al (1981).

Nine patients with peripheral vascular diseases, 5 with scleroderma (1 male and 4 female) and 4 with diabetes (2 male and 2 female) were treated with PGE₁. The age of patients with scleroderma was 19–68 years, average 50 years and that of diabetic patients was 41–75 years, average 62 years. All patients with scleroderma

* Correspondence.

showed a Raynaud's phenomenon and all with diabetes suffered a numbness and a cold sensation in the feet. They were treated with 3 μ g of lipo-PGE₁ and 40–60 μ g (usual dose for Japanese) of PGE₁-CD in a cross-over test. Lipo-PGE₁ was given first in 6 cases and PGE₁-CD first in 3 cases. The intervals between the two treatments were at least 3 days. Lipo-PGE₁ was diluted by, and PGE₁-CD was dissolved and diluted by, 200 ml of 5% glucose, they were then infused intravenously for 90–120 min. The room temperature and humidity were kept constant at 25 °C and 60% respectively.

The effects of PGE_1 were evaluated objectively as well as subjectively. Changes in sensation of warmness and relief of numbness were reported. Digital plethysmograms (pulse waves) were taken before and after the PGE_1 infusion as an objective assessment. A Photo Plethysmograph, Model PT-300, Fukuda Denshi, Tokyo, was employed for measuring plethysmograms.

Although the subjective data were not reliable because of an open labelled study, all patients with scleroderma treated by $3 \mu g$ of lipo-PGE₁ showed a relief in Raynaud's phenomenon and experienced a sensation of warmth in their extremities. All 4 diabetic patients treated with lipo-PGE₁ showed a remarkable

FIG. 1. Changes in plethysmogram (pulse wave) induced by infusion of PGE_1 (PGE₁-CD) and lipo-PGE₁ (PGE₁ incorporated in lipid microspheres) in a patient with scleroderma. Amplitude is mV/V (mV is an amplitude produced by 1 mV, and V is a thickness of finger, 10 mm = 1).

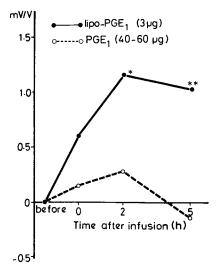


FIG. 2. Changes in amplitude of a digital plethysmogram induced by PGE₁ and lipo-PGE₁ (see legend of Fig. 1 and text for details) before and after the infusion in patients with peripheral vascular diseases. The values are averages in 9 patients, 5 with scleroderma and 4 with diabetes. mV/V (see legend of Fig. 1). *P < 0.01, **P < 0.001 (*t*-test) in relation to PGE₁.

improvement in numbness and cold sensation. The subjective improvement in the patients treated with 40-60 µg of PGE₁-CD was not so marked. Plethysmograms on a right middle finger of a patient with scleroderma are shown in Fig. 1. It shows a long-lasting vasodilating effect of lipo-PGE₁. The summarized plethysmograms in 9 cases of scleroderma and diabetes are shown in Fig. 2. An average amplitude of the pulse wave (mV/V) in plethysmograms on right index fingers with scleroderma and on right big toes in diabetes are given in Fig. 2. This shows that 3 μ g of lipo-PGE₁ was significantly more effective than 40-60 µg of PGE₁-CD when the effects were compared at 2 and 5 h after the infusions. An average amplitude at 2 h in patients with diabetes treated with lipo-PGE₁ and PGE₁-CD was 1.7 and 0.25 mV/V, respectively, and that in scleroderma was 0.49 and 0.3 mV/V. Therefore, it seems that the difference in effectiveness between lipo-PGE₁ and PGE₁-CD groups was more distinct in the diabetic peripheral vascular disease. Some diabetic patients felt warmth and showed a high amplitude in the plethysmogram even 24 h after the infusion. No side effects were observed in this study except vascular pains near the site of injection in 3 cases of PGE₁-CD group.

Intravenous infusion of PGE_1 is one of the most useful treatments of peripheral vascular diseases such as scleroderma, Buerger's disease and diabetic angiopathy. However, PGE₁-CD preparations have some problems as described above. PGE₁-CD is a stable and water soluble preparation of PGE₁ and has the same pharmacological effects as that of PGE1 (Kawasaki et al 1979). Since PGE_1 in the form of lipo-PGE₁ is incorporated in a lipid microsphere, it is speculated that lipo-PGE₁ is more stable than free PGE₁ against enzymatic inactivation in the body and causes less irritation. The less irritation caused by lipo-PGE₁ than PGE₁-CD to the upper respiratory tract in man was proved by Mizushima et al (1983). Moreover it was found that the lipid microspheres (intralipid, Green Cross Co., Ltd, Osaka) were highly accumulated in the inflamed tissues (Mizushima et al 1982). It is suggested, therefore, that lipo-PGE₁ is also accumulated in lesions in peripheral vascular diseases. Probably by virtue of these properties, lipo-PGE₁ (PGE₁ incorporated in lipid microsphere) showed a much more beneficial effect than PGE₁-CD for peripheral vascular diseases.

We are most grateful to Drs H. Watanabe, K. Narita and K. Maejima for their cooperation in conducting clinical research and to Green Cross Co., Ltd and Taisho Pharm. Co., Ltd for preparation of lipid microsphere PGE_1 .

REFERENCES

- Clifford, P. C., Martin, M. F. R., Sheddon, E. J., Kirby, J. D., Baird, R. N., Dieppe, P. A. (1980) Br. Med. J. 281: 1031-1034
- Kawasaki, A., Ishii, K., Kitagawa, T. (1979) Öyöyakuri 17: 859–880
- Martin, M. F. R., Dowd, P. M., Ring, E. F. J., Cooke, E. D., Dieppe, P. A., Kirby, J. D. T. (1981) Ann. Rheum. Dis. 40: 350–354
- Mizushima, Y., Hamano, T., Yokoyama, K. (1982) Ibid. 41: 263–267
- Mizushima, Y., Hoshi, K., Aihara, H., Kurachi, M. (1983) J. Pharm. Pharmacol. 35: 397
- Terragno, A., Rydzik, R., Terragno, N. A. (1981) Prostaglandins 21: 101–113